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Abstract

Geometrical optics is extended so as to provide a model for spinning light rays via the coadjoint orbits of the Euclidean group
characterized by color and spin. This leads to a theory of “geometrical spinoptics” in refractive media. Symplectic scattering yields
generalized Snell–Descartes laws that include the recently discovered optical Hall effect.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical foundation of optics certainly goes back to Euclid’s Optics with the observation that light travels
along straight lines, namely along the geodesics of Euclidean space. Geometrical optics has, since the breakthrough
provided by the Fermat principle of least optical path, proved extremely useful as a theory of light, prior to Maxwellian
wave optics. Suffice it to mention its relevance in the design of optical (as well as electronic!) devices using
lenses, mirrors, etc., its importance in the understanding of caustics [1], in the modelling of optical aberrations, etc.
Geometrical optics has, since then, been recognized as a “semi-classical” limit of wave optics with small parameter λ−

(where λ is a typical wavelength); it has nevertheless been constantly considered as a self-consistent theory for light
rays, borrowing much from differential geometry, and, more specifically, from Riemannian and symplectic geometries.
Geometrical optics provides, indeed, a beautiful link between both previously mentioned geometries: (i) light travels
along (oriented) geodesics of an optical medium, a 3-dimensional manifold whose Riemannian structure is defined by
the refractive index, (ii) the set of all such geodesics is naturally endowed with a structure of 4-dimensional symplectic
manifold. It is this duality that will serve as an Ariadne’s thread in our subsequent extension of geometrical optics.
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1 UMR 6207 du CNRS associée aux Universités d’Aix-Marseille I et II et Université du Sud Toulon-Var; Laboratoire affilié à la FRUMAM-
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In addition, it is nowadays a well-established experimental fact that trajectories of light beams in inhomogeneous
media slightly depart from those enacted by the Fermat principle. This class of effects predicted by Fedorov, fifty years
ago, has since then received numerous theoretical interpretations that go back to the work of Costa de Beauregard [12],
Boulware [9], among many a fundamental and more recent contributions (see, e.g., [4,7] for a brief historical
account with an updated list of references regarding both theory and experiment). One of the measured effects is
the “Magnus Effect for light” that describes how trajectories depend upon the polarization state of the beam in weakly
inhomogeneous media. Another related effect is the so-called “optical Hall effect” (OHE) which has lately received
special attention and is associated with a transverse shift of the position of a photonic wave packet at the interface
separating two media of different refractive indices. (The OHE actually bears strong resemblance to the Hall effect
governing, in 2-dimensional conducting samples, the electronic transport, transverse to the electric field and an applied
external magnetic field.) Such a shift, transverse to the incidence plane, has already been experimentally measured by
Imbert [25] in the case of total reflection. As to the transverse shift for partial reflection and refraction, it is currently
under highly active investigation from both a theoretical and an experimental perspective; see, e.g., [4,7,31]. Let us
also mention the recently discovered phenomenon of magneto-transverse light diffusion in Faraday-active dielectric
media [37], the “Photonic Hall Effect” (PHE), see [39], which is clearly a spin-induced effect.

The need for a generalization of geometrical optics which would consistently include polarization effects hence
became mandatory. Various approaches, including a full-fledged computation of refraction and reflection of arbitrarily
polarized Gaussian electromagnetic wave packets [7], have been put forward. Of particular interest are recent
extensions of geometrical optics, within a Maxwellian context, using a certain “Berry connection” whose curvature
(in momentum space) yields a modification of the Fermat equations of motion for polarized light beams [29,4,5,8,31];
see also [2,3,21]. A quasi-classical formula for the above-mentioned transverse shift of polarized light beams has also
been proposed by Onoda et al. [31], together with an experimental set up using photonic crystals in order to reveal
the OHE for reflected and refracted light beams. Nevertheless, no consensus seems to have emerged so far regarding
a clear-cut theory of geometrical optics including polarization.

Our standpoint is to take advantage of the fact that geometrical optics is fundamentally related to Euclidean
geometry since oriented straight lines (light rays) actually consist of specific coadjoint orbits of the Euclidean
group, E(3). An extended theory of geometrical optics should therefore be expected to emerge from the same
Euclidean geometry, more precisely from the consideration of the other E(3)-coadjoint orbits which seem to have
been overlooked by physicists. The purpose of this article is therefore to view and exploit the generic E(3)-coadjoint
orbits, carrying color and spin according to Souriau’s classification [34], as the sets of “free” colored and circularly
polarized light rays. We then introduce a natural adaptation of the Fermat prescription to the spin case, inspired by the
prescription of “minimal coupling” to a curved metric used in general relativity, see, e.g., [17,28,34,36]. This leads us
in a straightforward fashion to a theory describing the trajectories of spinning light rays in arbitrary dielectric media.
We name this theory “geometrical spinoptics”.

The present article is organized as follows.
Section 2 is devoted to a general overview of the geometry of the set of light rays with color and spin as coadjoint

orbits of the group SE(3) of Euclidean orientation-preserving2 isometries of Euclidean 3-dimensional space. It should
be highlighted that the generic coadjoint orbits, with topology T S2, are automatically endowed with a “twisted”
cotangent symplectic structure which describes spin—or polarization. There is, hence, no need to introduce a “Berry
curvature” which is, in a sense, already encoded in the above-mentioned geometrical twist. The relationship of these
Euclidean coadjoint orbits to the massless, spinning, coadjoint orbits of the Poincaré and Galilei groups is spelled out
explicitly.

In Section 3, we generalize the Fermat prescription so as to describe the presymplectic structure of colored and
spinning light rays in an arbitrary refractive medium characterized by a dielectric tensor defining a Riemannian
metric. This prescription happens to be akin to the “minimal coupling” procedure used, in general relativity, to
account for the geodesic deviation of spinning particles due to tidal forces generated by the interaction of spin and
spacetime curvature. The general equations for spinoptics (3.17) are then derived. The special case of an isotropic
and inhomogeneous medium, of refractive index n, is worked out in great detail; we recover, upon linearization of the
foliation (3.28) around the value n = const., a system of equations of motion for polarized light rays proposed in [31].

2 Considering, here, the neutral component of the Euclidean group is a technicality which will be discussed and justified below.
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Section 4 gives us the opportunity to derive, in the present framework, the Snell–Descartes laws (4.30) for
spinoptics, dictated by Souriau’s symplectic scattering. We explicitly compute the form of the reflection and refraction
(local) symplectomorphism between “in” and “out” polarized optical states. A novel and subtle phenomenon naturally
stems from our geometrical treatment, viz., the fact that scattered spinning light rays are actually shifted, transversely
to the plane of incidence. The formula (4.33) we derive for this transverse shift agrees with the one proposed in [31] to
describe the OHE from a different standpoint. This shift is then analyzed for left-handed media, providing a plausible
mechanical interpretation of the “perfectness” of superlenses [33].

At last, in Section 5, we sum up the content of this article, and conclude by presenting several generalizations in
prospect, e.g., a theory of geometrical spinoptics for Faraday-active media.

A companion article [19] provides an overview of geometrical spinoptics and discusses its relation to other
physically oriented approaches found in the recent literature.

2. Geometrical optics and the Euclidean group

An oriented straight line, ξ , in Euclidean (affine) space (E3, 〈·, ·〉) is determined by its direction, i.e., a vector
u ∈ R3 of unit length and an arbitrary point M ∈ ξ . Should an origin, O ∈ E3, be chosen, we may take the vector
q = M − O to be orthogonal to u. The set of oriented, nonparametrized, straight lines is plainly the smooth manifold

M = {ξ = (q, u) ∈ R3
× R3

| 〈u, u〉 = 1, 〈u, q〉 = 0}, (2.1)

i.e., the tangent bundleM ∼= T S2 of the round sphere S2.
Now T S2 has been recognized [34] as a coadjoint orbit of the group, E(3), of Euclidean isometries and inherits, as

such, an E(3)-invariant symplectic structure; see also [24].
Let us briefly recall the general construction leading, in particular, to the previous symplectic manifold. Start with

the group SE(3) = SO(3)nR3 of orientation-preserving Euclidean isometries whose elements we denote g = (R, x).
Let µ = (`, p) be a point in se(3)∗ where se(3) = R3 n R3 is the Lie algebra of SE(3). The coadjoint representation3

of SE(3) reads then Coadg(`, p) = (R` + x × Rp, Rp) where × stands here for standard cross-product. Obviously
C = ‖p‖

2
= 〈p, p〉 and C ′

= 〈`, p〉 are invariants of the coadjoint representation. If C = 0, then C ′′
= ‖`‖2 is

an extra invariant. These are, in fact, the only invariants and fixing (C, C ′) or (C = 0, C ′′) yields a single coadjoint
orbit [22,30,34].

Consider now, in full generality, a finite-dimensional Lie group G whose Lie algebra is denoted g. Fix µ0 ∈ g∗ and
posit the following 1-form

$ = µ0 · ϑ (2.2)

on G where ϑ stands for the (left-invariant) Maurer–Cartan 1-form of the group. It is a general fact that σ = d$ is a
presymplectic 2-form on G which descends as the canonical Kirillov–Kostant–Souriau [26,27,34] symplectic 2-form,
ω, on the coadjoint orbit Oµ0 = {µ = Coadg(µ0) | g ∈ G} ∼= G/Gµ0 where Gµ0 is the stabilizer of µ0 ∈ g∗.

2.1. Colored light rays

Specializing this construction to the case G = SE(3), with C = p2 and p > 0 together with C ′
= 0, we can

choose µ0 = (0, p0) and p0 = (p, 0, 0).
The associated 1-form on the group reads then4

$ = p〈u, dx〉 (2.3)

where R = (u, v, w) is viewed as an orthonormal, positively oriented, basis of R3. Its exterior derivative, σ = d$ ,
retains the form

σ(δg, δ′g) = p
[
〈δu, δ′x〉 − 〈δ′u, δx〉

]
(2.4)

3 The coadjoint representation, Coad, is defined by Coadgµ ≡ µ ◦ Adg−1 where Ad is the adjoint representation.
4 We write (2.3) as a useful shorthand for $ = p δi j ui dx j , where i, j = 1, 2, 3; the Einstein summation convention is being understood.
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for all δg, δ′g ∈ Tg SE(3); this 2-form clearly descends to the spherical tangent bundle ST R3
= S2

× R3 of R3

described by the pairs (u, x).
Computing the kernel of the latter 2-form yields

(δu, δx) ∈ ker(σ ) ⇐⇒

{
δu = 0
δx = αu

(2.5)

with α ∈ R. We recognize in (2.5) the foliation defining the equations of the geodesics of Euclidean space (E3, 〈·, ·〉),
or, in the context of geometrical optics, the light rays in vacuum.

The first-integrals ξ = (q, u) of the foliation (2.5) where

q = x − u〈u, x〉 (2.6)

parametrize the manifold Oµ0
∼= T S2 of light rays of color p, see (2.1). (This invariant, p, of the coadjoint

representation of E(3) has been coined “color” in [34] as 2π h̄/p may be interpreted as the Euclidean “wavelength”
of the light rays.) The symplectic form, ω, of the latter manifold is such that σ = (SE(3) → Oµ0)

∗ω, viz.,

σ(δg, δ′g) = ω(δξ, δ′ξ) = p
[
〈δu, δ′q〉 − 〈δ′u, δq〉

]
(2.7)

or, equivalently,

ω = dθ and θ = −p〈q, du〉. (2.8)

Let us note that the SE(3)-coadjoint orbit Oµ0 is an E(3)-coadjoint orbit, as well.

2.2. The Fermat equations

In order to describe light rays in a refractive medium of index n ∈ C1(R3, R>0), let us modify the 1-form (2.3)
according to Fermat’s prescription, $  n$ , and start with the new 1-form

$ = pn(x)〈u, dx〉 (2.9)

on the bundle ST R3.
Again, the characteristic foliation of σ = d$ should lead to ordinary differential equations governing light rays in

such a medium. Indeed, (δu, δx) ∈ ker(σ ) iff 〈δ(nu), δ′x〉− 〈δ′(n)u + nδ′u, δx〉+λ〈u, δ′u〉 = 0 for all δ′u, δ′x ∈ R3,
where λ is a real Lagrange multiplier. Redefining α = λ/n, we get

(δu, δx) ∈ ker(σ ) ⇐⇒

{
δ(nu) = α grad n
δx = αu

(2.10)

with α ∈ R, i.e., a 1-dimensional foliation which yields – if we put α = δt where t is now arc-length – Fermat’s
equations of geometrical optics in an isotropic medium of refractive index n. Notice that the system (2.10) is
independent of the color p.

2.3. The spinning and colored Euclidean coadjoint orbits

2.3.1. The manifold of circularly polarized light rays
Apart from the trivial coadjoint orbit and the 2-spheres characterized by the invariants C = 0 and C ′′

= s2 with
s > 0, there exist, most interestingly, another class of SE(3)-coadjoint orbits defined by the invariants C = p2, with
p > 0 (color), and C ′

= sp where s 6= 0 stands for spin. The orbit passing through µ0 = (`0, p0) where `0 = (s, 0, 0)

and p0 = (p, 0, 0) is again Oµ0
∼= T S2 and is endowed with the symplectic structure coming from the 1-form (2.2)

on the group SE(3) which reads

$ = p〈u, dx〉 − s〈v, dw〉. (2.11)

This 1-form is, by construction, SE(3)-invariant. The associated momentum mapping, see [34], J : SE(3) →

Oµ0 ⊂ se(3)∗ : (R, x) 7→ (`, p) is actually given by $(δZ g) = J (g) · Z where g 7→ δZ g is the fundamental vector
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field associated with Z ∈ se(3). If Z = (ω, γ ), we get δZ (u, v, w, x) = (ω × u, ω × v, ω × w, ω × x + γ ). We readily
obtain $(δZ g) = p〈u, ω × x + γ 〉 − s〈v, ω × w〉 = 〈`, ω〉 + 〈p, γ 〉, hence{

` = x × p + su
p = pu

(2.12)

allowing us to interpret ` as the angular momentum, su as the spin (or polarization) vector and p as the linear
momentum of the light ray. We call helicity the sign of the spin invariant, χ = sign(s).

Note, en passant, that the union of two SE(3)-coadjoint orbits defined by the invariants (p, s) and (p, −s) is
symplectomorphic to a single E(3)-coadjoint orbit.

An intermediate stage between these classical models and their geometrically quantized version is
prequantization [34]. Here, the latter construction would restrict spin to be half integral, s ∈

1
2Zh̄. To describe spinning

light rays, we will naturally put s = χ h̄. Euclidean coadjoint orbits with χ = +1 (resp. χ = −1) describe right-
handed (resp. left-handed) circularly polarized light rays [34,22]. For the sake of completeness, let us mention that
one often writes p = kh̄ where k may be interpreted as the (Euclidean) “wave number” of the light rays.

Straightforward computation yields d〈v, dw〉 = Surf, i.e., the surface element of the 2-sphere described by
u = v × w, namely Surf(δu, δ′u) = 〈u, δu × δ′u〉. The exterior derivative σ = d$ takes on the form

σ(δg, δ′g) = p
[
〈δu, δ′x〉 − 〈δ′u, δx〉

]
− s〈u, δu × δ′u〉 (2.13)

for all δg, δ′g ∈ Tg SE(3); this 2-form again descends to ST R3. The characteristic foliation of the latter 2-form is,
verbatim, given by (2.5): the spinning light rays in vacuum are nothing but the Euclidean geodesics. (As will be shown
in the sequel, things will change dramatically for such light rays in a refractive medium.)

The manifold Oµ0
∼= T S2 of spinning light rays is, just as before, parametrized by the pairs ξ = (q, u) and

endowed with the “twisted” symplectic 2-form, ω, viz.,

σ(δg, δ′g) = ω(δξ, δ′ξ) = p
[
〈δu, δ′q〉 − 〈δ′u, δq〉

]
− s〈u, δu × δ′u〉. (2.14)

2.3.2. A noncommutative wave plane
A new phenomenon then appears, which we link to the previously introduced twisted symplectic structure, namely

noncommutativity of each fiber TuS2 viewed as the “wave plane” u⊥ orthogonal to the direction u of the ray.
Indeed, let us define linear coordinates qi = 〈vi , q〉 with vi ∈ R3 for i = 1, 2 in that plane. Straightforward
computation of the Poisson bracket of q1 and q2, with respect to the symplectic structure ω in (2.14), yields
{q1, q2} = −ω−1(dq1, dq2) = (1/p2)〈`, v1 × v2〉 where the angular momentum ` is as in (2.12). If v1 and v2
form an orthonormal basis of u⊥ such that v1 × v2 = u, then

{q1, q2} =
s

p2 (2.15)

implying noncommutativity of each (Lagrangian) space u⊥ consisting of all rays parallel to the direction u.

2.3.3. Euclidean polarized light rays as stationary massless states of the Poincaré and Galilei groups
Let us discuss here, for the sake of completeness, the relationship between this purely Euclidean model of spinning

and colored light rays and the classical models of massless particles pertaining to either the relativistic or the
nonrelativistic framework.

• The spin-s, massless, coadjoint orbit of E(3, 1)0 = O(3, 1)0nR4, the connected Poincaré group, has the topology
of the cotangent bundle of the punctured light cone, described by (x, p) ∈ T (R3

\ {0}), and is endowed with the
symplectic 2-form ω̃ given, in a Lorentz frame, by

ω̃(δ(x, p), δ′(x, p)) = 〈δp, δ′q〉 − 〈δ′p, δq〉 −
s

‖p‖3 〈p, δp × δ′p〉 (2.16)

corresponding to Equation (17.145) in [34]; see also [16,15]. The Lie subgroup (R, +) of time translations acts
in a Hamiltonian way on it. Its infinitesimal action is given by δε(x, p) = ε(−cp/‖p‖, 0) where ε ∈ R and c
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denotes the velocity of light in vacuum. The associated moment map is the energy E : (x, p) 7→ c‖p‖, namely
ω̃(δε(x, p)) = d(Eε).

The submanifold ıE : ST R3 ↪→ T (R3
\ {0}) defined by a fixed positive energy

E = cp (2.17)

where the constant p > 0 stands for “color”, is indeed the presymplectic manifold (ST R3, σ ) given by (2.13),
where u is the direction of p. This presymplectic structure is preserved by the group A(3, 1)0 = SE(3) × R ⊂

E(3, 1)0. (The “Aristotle group”, A(3, 1), is the centralizer of time translations in the Poincaré group E(3, 1).) The
Marsden–Weinstein (MW) reduced symplectic manifold T (R3

\{0})//(R, +), i.e., the stationary relativistic states of
energy (2.17), is then symplectomorphic to our coadjoint orbit (T S2, ω) of the Euclidean group SE(3) = A(3, 1)0/R,
viz.,

ı∗E ω̃ = π̃∗ω (2.18)

where π̃ : (x, p) 7→ (q = x − u〈u, x〉, u = p/‖p‖), and ω is as in (2.14).
• The (massless) coadjoint orbit of Gal(3, 1)0 = SE(3) n R4, the connected Galilei group, with Casimir invariants

p (color) and s (spin) is plainly symplectomorphic to (T S2
× T R, ω̂) described by the quadruples (q, u, t, E), where

ω̂ = ω − dE ∧ dt (2.19)

and ω is given by (2.14); cf. Proposition 14.53 of [34]. Time translations, (R, +), act in a Hamiltonian way
via (q, u, t, E) 7→ (q, u, t + e, E) where e ∈ R. The associated moment map is clearly given by the energy
(q, u, t, E) 7→ E .

The submanifold E : T S2
× R ↪→ T S2

× T R+ of Galilei massless states of fixed energy

E = const. (2.20)

is endowed with the presymplectic 2-form ∗

E ω̂. Again, its structure is preserved by A(3, 1)0. (Note that A(3, 1) =

E(3, 1)∩Gal(3, 1) ⊂ GL(5, R).) The MW-reduced symplectic manifold (T S2
×T R)//(R, +), i.e., the nonrelativistic

stationary states of energy (2.20), is, again, symplectomorphic to our SE(3)-coadjoint orbit, viz.,

∗

E ω̂ = π̂∗ω (2.21)

where π̂ : (q, u, t) 7→ (q, u), and ω is as in (2.14).
We have, hence, shown that the connected symplectic manifolds of Euclidean spinning light rays, naturally arise

as the MW-reduced manifolds of stationary states of given energy, E = const., for the massless spinning coadjoint
orbits of the connected Poincaré – as well as Galilei – group.5

3. A general framework for spinoptics

3.1. The Fermat prescription revisited

Let us recall how the Fermat equations describing light propagation in an isotropic and inhomogeneous medium
can be interpreted as those of the geodesics of a metric conformally related to the flat spatial Euclidean metric; see
also [10,11].

Returning to the expression (2.9) which we rewrite as $ = p n(x)2
〈n(x)−1u, dx〉, we introduce the new,

curved, metric g = n2
〈·, ·〉 on R3 and the g-unitary vector U = n−1u; we also put X = x to keep the notation

coherent. With these preparations, (M ∼= R3, g) becomes a Riemannian 3-manifold while its spherical tangent bundle
ST M = {η = (U, X) ∈ T M | g(U, U ) = 1} becomes endowed with the 1-form

$ = pg(U, dX) (3.1)

which (up to an overall constant factor p) stems from the canonical 1-form of T ∗M via the metric g.

5 The two-component E(3)-coadjoint orbits are reduced MW-manifolds of the orthochronous Poincaré and Galilei groups.
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We already know that the characteristic foliation of σ = d$ yields the Fermat equations, see (2.10). Let
us briefly recall why this foliation also provides us with the geodesic flow associated with the Fermat metric
g = gi j (X)dX i

⊗ dX j , where

gi j (X) = n(X)2δi j (3.2)

with i, j = 1, 2, 3. (Note that the metric g = ni (X)2δi j dX i
⊗ dX j would readily enable us to deal with some special

anisotropic media [10].) Call ∇ the Levi–Civita connection of (M, g) and Γ k
i j its local components. We will denote

by d∇ the exterior covariant derivative of tensor fields, e.g., locally, d∇U k
= dU k

+ Γ k
i j dX iU j . Then, the 2-form

σ = d$ = p gi j (X) d∇U i
∧ dX j writes alternatively

σ(δη, δ′η) = p
[
g(δ∇U, δ′ X) − g(δ′∇U, δX)

]
(3.3)

for all δη, δ′η ∈ Tη ST M . Its characteristic foliation is integrated by the geodesic flow. Actually, δ(U, X) ∈ ker(σ )

iff g(δ∇U, δ′ X) − g(δ′∇U, δX) + λg(U, δ′∇U ) = 0 for all δ′∇U, δ′ X ∈ T M , where λ ∈ R. We hence obtain

δ(U, X) ∈ ker(σ ) ⇐⇒

{
δ∇U = 0
δX = λU

(3.4)

with λ ∈ R, which we recognize as the geodesic foliation for (M, g).

3.2. Spinoptics and minimal coupling to a Fermat metric

Let us now tackle the geometric description of spinning light rays in an arbitrary Riemannian, orientable, 3-
manifold (M, g, volg). As we will see, this novel approach allowing for a complete treatment of the geodesic
deviation of spinning light rays in a generalized Fermat metric borrows much from general relativity, namely from the
Papapetrou–Dixon–Souriau equations of motion of test particles in the gravitational field, see [32,13,35] and, e.g., [17,
28,14,36].

3.2.1. Minimal coupling
The procedure involved is already known as “minimal coupling” to a classical external field. In our context, it will

simply consist in considering, instead of the Euclidean group (viewed as the trivial SO(3)-principal bundle over E3),
the bundle, SO(M) → M , of oriented orthonormal frames of M and in the replacement

〈·, ·〉 g and d d∇ (3.5)

into the 1-form (2.11) with invariants p and s. With the above notation, this enables us to generalize (3.1) with the
following 1-form

$ = pg(U, dX) − sg(V, d∇ W ) (3.6)

on the SO(3)-principal bundle SO(M) → M described by g = ((U, V, W ), X) where (U, V, W ) is a g-orthonormal
basis of TX M such that volg(U, V, W ) = 1.

Taking advantage of the above observation that the characteristic foliation of σ = d$ yields the equations of
light rays, we contend that the equations of “geometrical spinoptics” based on (M, g), for color p and spin s = χ h̄
(with χ = ±1), are associated with the foliation ker(σ ) which we are now ready to determine explicitly.

3.2.2. Notation and miscellaneous formulæ
We denote by j (δ′ X) the g-skew symmetric (cross-product) operator of TX M defined by g(δX, j (δ′ X)δ′′ X) =

volg(δX, δ′ X, δ′′ X). Putting, e.g., V = g(V ) = g(V, · ), we have

U = j (V, W ) ⇐⇒ j (U ) = W V − V W . (3.7)

The curvature, R, of the Levi–Civita connection ∇ of (M, g) is defined by

R(δX, δ′ X)δ′′ X ≡ δ∇δ′∇δ′′ X − δ′∇δ∇δ′′ X − [δ, δ′
]
∇δ′′ X (3.8)
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where X 7→ [δ, δ′
]X is the Lie bracket of the vector fields X 7→ δX and X 7→ δ′ X . Its local expression is given by

R`
i jk ∂` = ∇i∇ j∂k − ∇ j∇i∂k , where ∂k = ∂/∂ X k , for i, j, k, ` = 1, . . . , 3.

The Ricci tensor Ric(δX, δ′ X) ≡ Tr(δ′′ X 7→ R(δ′′ X, δX)δ′ X) has local expression R jk = Ri
i jk .

Now, since dim(M) = 3, we have

R`
i jk = −

(
Rikδ

`
j − R jkδ

`
i + R`

j gik − R`
i g jk

)
+

1
2

R
(

gikδ
`
j − g jkδ

`
i

)
(3.9)

where R = Ri j gi j is the scalar curvature.
If Ω = j (U ) is as in (3.7), we find

g(V, R(δX, δ′ X)W ) ≡
1
2

g(δX, R(Ω)δ′ X) (3.10)

where the operator R(Ω) is given, via (3.9), by the g-skew symmetric operator

R(Ω) = −2(RicΩ + ΩRic) + RΩ . (3.11)

The scalar function R(Ω ,Ω) = −Tr(R(Ω)Ω) will also be needed; from (3.11) and Ω2
= UU − 1, we get the

remarkable expression

1
4

R(Ω ,Ω) = Ein(U, U ) (3.12)

where Ein = Ric −
1
2 R g is the Einstein tensor of the metric g.

For the conformally flat metric (3.2), we readily find the Christoffel symbols

Γ k
i j =

1
n

(
∂i n δk

j + ∂ j n δk
i − ∂`nδk`δi j

)
, (3.13)

the Ricci tensor

Ri j =
2

n2 ∂i n ∂ j n −
1
n
∂i∂ j n −

1
n
1n δi j , (3.14)

where 1n = δi j∂i∂ j n, and the scalar curvature

R =
2

n4 ‖dn‖
2
−

4

n3 1n. (3.15)

3.2.3. The general system for spinoptics
Let us work out the expression of the 2-form σ = d$ on SO(M) where $ is as in (3.6).
We find, remembering (3.8),

σ(δg, δ′g) = δ($(δ′g)) − δ′($(δg)) − $([δ, δ′
]g)

= p
[
g(δ∇U, δ′ X) − g(δ′∇U, δX)

]
− s

[
g(δ∇ V, δ′∇ W ) − g(δ′∇ V, δ∇ W ) − g(V, R(δX, δ′ X)W )

]
for all δg, δ′g ∈ Tg SO(M). Now, using the closure formula UU + V V + W W = 1, we readily get g(δ∇ V, δ′∇ W ) =

g(δ∇ V, [UU + V V + W W ]δ′∇ W ) = g(δ∇ V, UUδ′∇ W ) = g(δ∇U, V Wδ′∇U ) since (U, V, W ) is a g-orthogonal
frame. We then deduce that g(δ∇ V, δ′∇ W )−g(δ′∇ V, δ∇ W ) = g(δ∇U, [V W −W V ]δ′∇U ) = −g(δ∇U, j (U )δ′∇U ) =

volg(U, δ∇U, δ′∇U ) in view of (3.7). At last, we get

σ(δg, δ′g) = p
[
g(δ∇U, δ′ X) − g(δ′∇U, δX)

]
−

1
2

sg(δX, R(Ω)δ′ X) − svolg(U, δ∇U, δ′∇U ) (3.16)

with the help of (3.10) and the shorthand notation Ω = j (U ). The 2-form (3.16) turns out to descend, again, to the
spherical tangent bundle ST M , described by η = (U, X). Still denoting σ that 2-form on ST M , we compute its
kernel.
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Introducing, just as before, a real Lagrange multiplier, λ, for the constraint g(U, U ) = 1, we readily find that
δ(U, X) ∈ ker(σ ) iff pδ∇U+

1
2 s R(Ω)δX = 0 and pδX+s j (U )δ∇U = λU . This entails pδX−s2/(2p)Ω R(Ω)δX =

λU , prompting the Ansatz δX = αU +βs2Ω R(Ω)U , for some α, β ∈ R still to be determined. We thus get p2(αU +

βΩ R(Ω)U ) −
1
2 s2αΩ R(Ω)U −

1
2 s4βΩ [R(Ω)Ω R(Ω)] U = pλU . Recall that, if A, B are g-skew symmetric oper-

ators of TX M , then AB A =
1
2 Tr(AB)A. This enables us to compute the above bracketed term, viz., R(Ω)Ω R(Ω) =

−
1
2 R(Ω ,Ω)R(Ω), and to find α = λ/p and β = λ/(2p(p2

+
1
4 s2 R(Ω ,Ω))). Invoking (3.12), we end up with the

spinoptics system governing the trajectories of spinning light rays in a Riemannian 3-manifold (M, g), viz.,

δ(U, X) ∈ ker(σ ) ⇐⇒


pδ∇U = −

1
2

s R(Ω)δX

δX = α

[
U +

s2 Ω R(Ω)U

2
[

p2 + s2Ein(U, U )
]] (3.17)

with Ω = j (U ), and α ∈ R.
In the (3+1)-dimensional setting of general relativity, a similar system (the Papapetrou–Dixon–Souriau equations)

would describe geodesic deviation and spin precession of spinning test particles in a gravitational background field.
We stress that, in spinoptics (as well as in general relativity [35]), “velocity” δX and “momentum” U fail to be

parallel (see (3.17)). We will see how this phenomenon gives rise to subtle physical effects such as the optical Hall
effect.

3.2.4. Fermat spinoptics
As an illustration of the preceding results, let us write the exact spinoptics equations specialized to the Fermat

metric (3.2) associated with a refractive index n. Just as before, we denote by p(= kh̄) the color and s(= χ h̄) the spin
of the model. Although this could be deduced from the very general system (3.17), we choose to simply start from the
1-form (3.6) as this procedure actually yields all parameters adapted to the model in a straightforward fashion.

We begin here with (M, g) = (R3, n2
〈·, ·〉) where n ∈ C2(R3, R>0), and, upon defining the Euclidean

frame (u, v, w) = (nU, nV, nW ), express the 1-form (3.6) as a new 1-form on SE(3) which is parametrized by
g = ((u, v, w), x) as in Section 2. Using the expression (3.13) of the Christoffel symbols, we readily notice that
g(V, d∇ W ) = 〈v, dw〉 + n(x)−1 [〈v, dx〉 dn(w) − 〈w, dx〉 dn(v)]. Introducing now the “velocity”

v =
1
n

(3.18)

and its gradient

g = grad(v), (3.19)

we find the new spin term g(V, d∇ W ) = 〈v, dw〉− n [〈v, dx〉 〈w, g〉 − 〈w, dx〉 〈v, g〉] = 〈v, dw〉+ n〈(v × w)× g, dx〉.
This entails, that $ = pg(U, dX) − sg(V, d∇ W ) retains the following form

$ = 〈̂p, dx〉 − s〈v, dw〉 (3.20)

where

p̂ = n(x)(pu + sg × u) (3.21)

can be consistently interpreted as the spin-dependent “momentum” of the system.
Easy computation gives the exterior derivative σ = d$ of the 1-form (3.20), namely

σ(δg, δ′g) = 〈δp̂, δ′x〉 − 〈δ′p̂, δx〉 − s〈u, δu × δ′u〉 (3.22)

for all δg, δ′g ∈ TgSE(3), see (2.13). This 2-form descends to ST R3 and has, generically, rank 4; computing its kernel
needs some more effort.

Let us denote by

∇g =
∂g
∂x

(3.23)

the (symmetric) second derivative of the velocity v.
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We find, using (3.21), and in the same way as before, (δu, δx) ∈ ker(σ ) iff δp̂ + ng〈̂p, δx〉 − ns(∇g)u × δx = 0
and pnδx − nsg × δx + su × δu = λu where λ ∈ R is a Lagrange multiplier. Taking the cross-product of the latter
equation by u yields sδu = u × n(pδx − sg × δx), which can be inserted into the former equation with the help of
(3.21). In doing so, using the following partial result δu + (s/p)g × δu = [(np/s)u + ng × u + (sn/p)g〈g, u〉] × δx,
we end up with

p2n2

s
u × δx + n2s‖g‖

2u × δx − sn [ j (u) ∇g + ∇g j (u)] δx = 0 (3.24)

where, see (3.7), j (u) : δx 7→ u × δx is the Euclidean cross-product operator. We still need to compute the last
anticommutator in the above equation; it is given by the general formula j (u) H + H j (u) = j (−Hu + Tr(H)u) for
any u ∈ R3 and any symmetric H ∈ L(R3). Eq. (3.24) reduces then to

δx = β

[
p2n2

s
u + n2s‖g‖

2u + sn(∇g)u − sn Tr(∇g)u
]

(3.25)

for some β ∈ R.
We can finally write the system defining the kernel of our 2-form as

(δu, δx) ∈ ker(σ )

m
sδu =

p

v
u ×

(
1 −

s

p
j (g)

)
δx

δx = α

[
au +

vs2

p2 ∇ug
] (3.26)

with α ∈ R, and where

a = 1 +
s2

p2 ‖g‖
2
−

vs2

p2 div(g)

[
= 1 +

s2

p2 ‖grad v‖
2
−

s2

p2 v1v

]
. (3.27)

We have, equivalently6

(δp̂, δx) ∈ ker(σ )

m
δp̂ = −

1
v
〈̂p, δx〉 g +

s

p

∂g
∂x

[(
1 +

s

p
j (g)

)−1

p̂

]
× δx

δx = α

[
a1 +

vs2

p2

∂g
∂x

](
1 +

s

p
j (g)

)−1

p̂

(3.28)

with α ∈ R, in terms of the natural variables, viz., momentum p̂ and position x.
This rather complicated system defining the equations for the trajectories of spinning light rays with color p and

spin s in a refractive medium of index n = 1/v constitutes the novel differential equations of Fermat spinoptics, up to
reparametrization.

We clearly recover from (3.28) the original Fermat equations (2.10) in the spinless case, s = 0.
Let us finish this section by highlighting the relationship of our foliation for Fermat spinoptics to recent work of

Onoda et al. [31]. Neglecting, in our system (3.28), all terms involving second derivatives ∇g of the velocity v, and
all quadratic terms ‖g‖

2, we end up (choosing a parameter defined by α = 1), with the system
δp̂ ∼= −

1
v
〈̂p, δx〉g

δx ∼= p̂ −
s

p
g × p̂

(3.29)

6 Note that (1 + j (z))−1
= (1 + ‖z‖2)−1 (1 − j (z) + zz), where z = 〈z, ·〉, for all z ∈ R3.
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which, up to notation and reparametrization, exactly matches the first two Equations of Motion put forward in [31].
The EOM (3.29) provide, hence, a linearization of our system (3.28) around g = 0.

4. Spin Snell–Descartes’ laws and optical Hall effect

We will, as a first test of our approach, establish the spinoptics version of the Snell–Descartes laws generalizing
those of plain geometrical optics.

Consider the simplest case of a planar interface separating space into two regions (M1, n1), resp. (M2, n2), where
M1 = {x ∈ R3

| 〈n, x〉 < 0} has refractive index n1 = const., resp. M2 = {x ∈ R3
| 〈n, x〉 > 0} has refractive index

n2 = const., where n is a unit vector, orthogonal to the interface (and pointing toward M2), characterizing the optical
device.

Wishing to describe the laws of reflection and refraction, in geometrical terms, namely the scattering of spinning
light rays by this device, we will resort to a theory developed by Souriau, namely “symplectic scattering” [34]. See
also [23] for some further developments.

4.1. Symplectic scattering

Symplectic scattering should be thought of as the classical counterpart of unitary scattering of quantum mechanics
or quantum field theory. Classically, what is preserved by a scattering diffeomorphism is the basic structure of
the theory, namely the symplectic structure of the manifold of classical states, whereas quantum mechanically, the
scattering S-matrix has the property of preserving the fundamental structure of the space of quantum state vectors,
namely the Hilbertian structure.

Given symplectic manifolds (M1, ω1) of “in” states, and (M2, ω2) of “out” states, we assume that a scattering
process is given by a local symplectomorphism, viz., a local diffeomorphism

S :M1 →M2 such that ω1 = S∗ω2. (4.1)

Such mappings being far from unique, we have to take into account the geometric features of the scattering device to
try and find a unique symplectomorphism, S.

In most cases, the “in” and “out” manifolds are Hamiltonian G-spaces7 (e.g., coadjoint orbits) of some Lie group
G, for instance a group of space(-time) automorphisms; they represent the free asymptotic states of the system. The
scattering device reduces the original symmetry to a Lie subgroup H ⊂ G whose action is assumed to intertwine the
symplectomorphism S, that is

S ◦ hM1 = hM2 ◦ S (4.2)

for all h ∈ H . If Z ∈ h, where h is the Lie algebra of H , we readily find from (4.2) that the associated fundamental
vector fields are S-related, ZM2 = S∗ZM1 . This entails, via (4.1) and (4.2), that ω1(ZM1) = S∗(ω2)(ZM1) =

S∗(ω2(S∗ZM1)) = −S∗(d(J2 · Z)) where J2 is the moment map of (M2, ω2, G). At last ω1(ZM1) = −d(S∗(J2) · Z)

for all Z ∈ h which, ifM1 andM2 are connected, enables us to write the conservation law

J1|h = S∗(J2|h) (4.3)

that plays a central role in the determination of the sought scattering mapping, S.

4.2. Scattering of spinning light rays

Let us now turn to the effective computation of the scattering mapping of light rays with color p and spin s = ±h̄
by the previously introduced interface separating two media of constant, unequal, refractive indices n1 and n2.

From now on (M1, ω1) and (M2, ω2) will represent SE(3)-coadjoint orbits respectively characterized by the
invariants

C1 = p2
1, C ′

1 = p1s1, and C2 = p2
2, C ′

2 = p2s2, (4.4)

7 These are symplectic manifolds (M, ω) equipped with a G-action g 7→ gM for which g∗

Mω ≡ ω and a momentum mapping [34], i.e., a
globally defined mapping J :M→ g∗ such that there holds ω(ZM) = −d(J · Z) for all Z ∈ g.
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where p1 = p n1 and p2 = p n2 with p > 0 and s1, s2 ∈ {+h̄, −h̄}. We handle, in this manner, all helicities at the
same time.

The canonical 2-forms onMi ∼= T S2 are given by (2.14) and read now

ωi (δξi , δ
′ξi ) = pi

[
〈δui , δ

′qi 〉 − 〈δ′ui , δqi 〉
]
− si 〈ui , δui × δ′ui 〉, (4.5)

for i = 1, 2.
Incoming light rays, i.e., hitting the interface in M1, constitute a submanifold ofM1, whereas light rays refracted

in M2 form a submanifold ofM2. Moreover, reflection will be dealt with by consideringM2 =M1, as a manifold,
whose symplectic 2-form ω2 is defined by p2 = p1 (since light bounces back in half-space M1 with index n1) and s2.

As to the symmetry group of the optical interface, it is clearly given by the Lie subgroup

H = {(A, c) ∈ SE(3) | An = n, 〈n, c〉 = 0}, (4.6)

hence H = SE(2) ⊂ SE(3).
We are now ready to implement (4.1)–(4.3).

4.2.1. Conservation laws
The H -momentum mapping of (T S2, ω) is the restriction J |h of the Euclidean momentum mapping, J . We

find [34] that J (q, u)|h = (L , P) is of the form{
L = 〈n, ` 〉

P = n × p
(4.7)

where J (q, u) = (`, p) is as in (2.12).
If we put (q2, u2) = S(q1, u1), the conservation law (4.3) reads

〈n, q1 × p1 + s1u1〉 = 〈n, q2 × p2 + s2u2〉 (4.8)

n × p1 = n × p2 (4.9)

where

pi = pi ui (4.10)

for i = 1, 2.
Eq. (4.9) readily implies

p2 = p1 + λn (4.11)

where λ is some smooth function of (q1, u1); taking into account the Euclidean invariants C1 = ‖p1‖
2

= p2
1 and

C2 = ‖p2‖
2

= p2
2 , see (4.4), already insures that λ depends on

α = 〈n, p1〉 (4.12)

only, via

λ2
+ 2αλ + C1 − C2 = 0. (4.13)

Note that, with our orientation, incoming rays are such that α > 0. We readily find the explicit expression8

λ =

{
−α +

√
α2 + C2 − C1 (refraction, n1 6= n2)

−2α (reflection, n1 = n2)
(4.14)

which will be used in the sequel.

8 If C1 > C2, then α2
+ C2 − C1 > 0 must furthermore hold true; if the latter condition is not satisfied, total reflection occurs.
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4.2.2. The scattering symplectomorphism
Taking advantage of (4.11), we now seek the diffeomorphism S : (q1, u1) 7→ (q2, u2) starting from the general

Ansatz{
q2 = q1 + µp1 + νn + %n × p1
p2 = p1 + λn

(4.15)

where λ is given by (4.13) and µ, ν, % are otherwise arbitrary functions of (q1, u1).
• From (4.15), (4.8) and (4.4), together with C ′/C = s/p, we immediately obtain α(C ′

2/C2 − C ′

1/C1) − %(C1 −

α2) + λC ′

2/C2 = 0, or, if n × p1 6= 0 (in the generic case of non-normal incidence),

% =
1

‖n × p1‖
2

[
α

(
C ′

2

C2
−

C ′

1

C1

)
+ λ

C ′

2

C2

]
. (4.16)

In the case of normal incident rays, ‖n × p1‖
2

= C1 − α2
= 0, we must have (λ + α)C ′

2/C2 − αC ′

1/C1 = 0 with
α =

√
C1 and λ + α =

√
C2 (resp. λ + α = −

√
C1) for refraction (resp. reflection). We therefore find{

s2 = s1 (refraction)

s2 = −s1 (reflection)
(4.17)

which constitute nontrivial conditions on the scattering symplectomorphism, S.
• Take now into account the constraints

‖pi‖
2

= Ci and 〈pi , qi 〉 = 0, (4.18)

for all i = 1, 2, to further determine the yet unknown function ν. If we put

z = 〈n, q1〉 (4.19)

for the n-component of “position” q1, then 〈p1, q1〉 = 〈p2, q2〉 = 0, together with (4.15) imply

ν =
−1

α + λ
(λz + µ(C1 + αλ)). (4.20)

• Let us use the previous Ansatz (4.15) to express that S : ξ1 7→ ξ2 is a symplectomorphism, namely
ω1(δξ1, δ

′ξ1) = ω1(δξ2, δ
′ξ2) for all δξi , δ

′ξi ∈ TξiMi , or

〈δp1, δ
′q1〉 − 〈δ′p1, δq1〉 −

C ′

1

C2
1

〈p1, δp1 × δ′p1〉 = 〈δp2, δ
′q2〉 − 〈δ′p2, δq2〉 −

C ′

2

C2
2

〈p2, δp2 × δ′p2〉 (4.21)

for all tangent vectors compatible with the constraints (4.18).
A tedious calculation shows us that (4.21) yields

0 = +δλδ′z − δ′λδz + α(δλδ′µ − δ′λδµ) + δαδ′ν − δ′αδν + δλδ′ν − δ′λδν

+ 〈δp1, n × p1〉δ
′(% − C ′

2/C2
2λ) − 〈δ′p1, n × p1〉δ(% − C ′

2/C2
2λ)

− 〈(2% + λC ′

2/C2
2)n, δp1 × δ′p1〉 + (C ′

1/C2
1 − C ′

2/C2
2)〈p1, δp1 × δ′p1〉. (4.22)

In order to tackle (4.22), we find it useful to introduce spherical coordinates (θ, ϕ) on the 2-sphere described by
u1 = p1/p1 = (cos ϕ sin θ, sin ϕ sin θ, cos θ).9

Rewrite (4.22) as

0 = +dλ ∧ dz + αdλ ∧ dµ + dα ∧ dν + dλ ∧ dν

+ C1 sin2 θdϕ ∧ (d% − C ′

2/C2
2 dλ)

− (2% + λC ′

2/C2
2)C1 cos θ sin θ dθ ∧ dϕ + (C ′

1/C2
1 − C ′

2/C2
2)C3/2

1 sin θ dθ ∧ dϕ. (4.23)

From (4.13) we get dλ = −λdα/(α + λ), while (4.12) yields dα = −
√

C1 sin θdθ . We then obtain the partial

9 We have 〈u1, δu1 × δ′u1〉 = sin θ(δθδ′ϕ − δ′θδϕ), and 〈n, δu1 × δ′u1〉 = cos θ sin θ(δθδ′ϕ − δ′θδϕ), and also 〈n, u1 × du1〉 = sin2 θdϕ.
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expression dλ ∧ dz + αdλ ∧ dµ + dα ∧ dν + dλ ∧ dν = −1/(α + λ)dα ∧ d(λz + αλµ − αν) = −1/(α + λ)2dα ∧

d((C2 − C1)z + C2αµ) with the help of (4.20). Some more effort is needed to finally transcribe (4.23) as

0 = dα ∧

[
d
(

(C2 − C1)z + (C2αµ)

(α + λ)2

)
−

(
λ

(α + λ)

C ′

2

C2
−

C ′

2

C2
+

C ′

1

C1

)
dϕ

+

(
C1

(
C ′

2

C2
2

−
C ′

1

C2
1

)
− αλ

C ′

2

C2
2

+ λ
C ′

2

C2
2

(C1 − α2)

(α + λ)

)
dϕ

]
. (4.24)

This readily implies

C2 − C1 + C2α
∂µ

∂z
= 0 (4.25)

and, with the help of (4.13), also gives

∂µ

∂ϕ
= 0, (4.26)

which leaves us with

µ =
(C1 − C2)

C2

z

α
+ µ̂ = 0 (4.27)

where µ̂ = f (α) is an arbitrary function of α.
• So far, all four functions λ, µ, ν, % have been determined by (4.14), (4.27), (4.20) and (4.16), up to an arbitrary

function µ̂. Let us show that, indeed, µ̂ = 0.
Returning to the expression (4.15) giving the scattering mapping which we write, for convenience, S : (q1, p1) 7→

(q2 = q1+µ1p1+ν1n+%1n×p1, p2 = p1+λ1n), its inverse S−1
: (q2, p2) 7→ (q1 = q2+µ2p2+ν2n+%2n×p2, p1 =

p2+λ2n) is such that λ2 = −λ1 (where α2 = α1+λ1), µ2 = −µ1, ν2 = λ1µ1−ν1 and %2 = −%1. These relationships
implement the principle of ray reversibility.

From the definition (4.19), we get z2 = z1 + α1µ1 + ν1 and find, resorting to (4.27), that µ1 + µ2 =[
C1α

2
2 f (α2) + C2α

2
1 f (α1)

]
/C1α

2
2 ≡ 0 iff f = 0.

We obtain, at last,

µ =
(C1 − C2)

C2

z

α
. (4.28)

We have thus completed the explicit determination of the scattering symplectomorphism by the plane interface
separating two refracting media of constant indices.10

Let us collect and present the above findings in a new guise where the scattering mapping, S, is uniquely given by
(4.15) with (4.17) and

λ =

{
−〈n, p1〉 +

√
C2 − ‖n × p1‖

2 (refraction)

−2〈n, p1〉 (reflection)

µ =

(
C1

C2
− 1

)
〈n, q1〉

〈n, p1〉

ν =
C1

C2
λ

〈n, q1〉

〈n, p1〉

% =
1

‖n × p1‖
2

[(
C ′

2

C2
−

C ′

1

C1

)
〈n, p1〉 +

C ′

2

C2
λ

]
,

(4.29)

the Casimir invariants being as in (4.4).

10 The H -equivariance (4.2) of the unique symplectomorphism (4.15), with (4.14), (4.28), (4.20) and (4.16), can be directly checked to hold, the
H = SE(2)-action onM = T S2 being given by hM(q, u) = (Aq + c − Au〈Au, c〉, Au), where h = (A, c) ∈ H (see (4.6)).



C. Duval et al. / Journal of Geometry and Physics 57 (2007) 925–941 939

4.3. Snell–Descartes’ laws of spinoptics and optical Hall effect

Introducing the angle of incidence θ1 (resp. the scattering angle θ2) between p1 (resp. p2) and n, we easily infer
from (4.9) the law of refraction obeyed by the direction of light rays, namely p1 sin θ1 = p2 sin θ2. As for the law of
reflection, (4.14) already yields the mirror transformation p1 7→ p2 = p1 − 2n〈n, p1〉.

4.3.1. The generalized Snell–Descartes laws
Summing up, and taking into account the specific result (4.17), we write the Snell–Descartes laws of spinoptics as{

n2 sin θ2 = n1 sin θ1, s2 = s1, (refraction)

θ2 = π − θ1, s2 = −s1, (reflection).
(4.30)

Let us emphasize that these laws must be supplemented – as shown below – by a new law which unveils a
phenomenon pertaining to geometrical spinoptics, namely a transverse shift of the scattered spinning light rays off the
plane of incidence spanned by n and p1 in generic position.

Choose now as origin, O , of Euclidean space, the intersection of the incoming light ray and the interface separating
the refractive media, so that q1 = 0. From (4.15) and (4.29), we get µ = 0 and ν = 0. We then obtain q2 = %n × p1
where

% =
1

‖n × p1‖
2

[
s2

p2
〈n, p2〉 −

s1

p1
〈n, p1〉

]
. (4.31)

Note that there is no transverse shift in the case of normal incidence. We finally obtain the following expression for
this transverse shift

q2 − q1 =
n × p1

‖n × p1‖

[s2 cos θ2 − s1 cos θ1]

pn1| sin θ1|
(4.32)

which is clearly valid for either cases of refraction or reflection. This formula does formally agree with an analogous
expression proposed by Onoda et al. [31] who used quite a different viewpoint.

Note, however, that the transverse shift (4.32) for reflected rays vanishes in our framework; see also [34]. On the
other hand, the nontrivial transverse shift for refracted spinning light rays, theoretically explained by (4.32) in the
present context of geometrical spinoptics, is indeed a novel phenomenon known as the “optical Hall Effect” and of
great importance in the new trends of experimental optics.

4.3.2. The special case of left-handed media
So far, we have been dealing with ordinary dielectric media. Quite interestingly, artificial materials enjoying a

negative refractive index (with both negative dielectric susceptibility and magnetic permeability) have been foreseen
by Veselago a few decades ago [38]. These brand new “left-handed” media (LHM) or metamaterials are nowadays
manufactured in the laboratories and their strange optical properties systematically studied. See, e.g., [6].

Let us emphasize that our general formalism applies just as well in the presence of these LHM. For example, the
Snell–Descartes laws, spelled out in Section 4.3.1, still hold true if n2 < 0, say. In this case, Eq. (4.30) account for
“negative refraction”, while (4.10) shows that the linear momentum p2 = pn2u2 and the direction u2 of a refracted
ray are antiparallel.

One of the striking features of these metamaterials is that the transverse shift of reflected and refracted spinning
light rays may vanish identically, namely

q1 − q2 = 0 iff n1 + n2 = 0. (4.33)

This characteristic property of metamaterials might provide a purely mechanical interpretation of the “perfectness” of
LHM lenses that allow to break the Rayleigh limit of optical devices [33].

5. Conclusion and outlook

The basics of geometrical spinoptics have been laid to extend, from first principles, geometrical optics to spinning
light rays. The point of view we have espoused made crucial use of Euclidean geometry. By generalizing the Fermat
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prescription to the presymplectic manifolds upstream of generic coadjoint orbits of the Euclidean group, we have
derived a 1-dimensional foliation governing the trajectories of spinning light rays in arbitrary dielectric media. A
refinement of the classic Snell–Descartes laws readily followed, together with the expression of the local scattering
symplectomorphism undergone by spinning refracted and reflected light rays. This enabled us to derive a formula for
the associated transverse shift, specific to the optical Hall effect.

A number of queries, triggered by the present study, remain the subject of future work; let us mention here some
few examples.

Revisiting the theory of caustics within this new framework would certainly be a worthwhile task, in view of the
refinement the Snell–Descartes laws governed by noncommutativity of the wave plane.

Quantizing geometrical spinoptics is also a serious endeavor. One might profit by the fact that prequantization
of the symplectic manifold of photonic states, with s = ±h̄, is given by the contact structure on the quotient
SO(M)/(ker($) ∩ ker(d$)) defined by (3.6). Another route to quantization might, alternatively, be offered by the
procedure of conformally equivariant quantization [20]. It would also be interesting to see how close to Maxwell
theory should such a quantization leads us.

Another challenging project would be to tackle all polarization states at a single stroke by considering that circular
polarization states given by the coadjoint orbits of the Euclidean group are, in fact, the building blocks or elementary
systems of a more elaborate, quantum, theory of spinoptics.

At last, it seems reasonable to envisage extending geometric spinoptics to the case of Faraday-active media by
coupling, from the outset, the photon spin and the external magnetic field via the color, p, much in the same way as
the (anomalous) magnetic interaction term is introduced via the mass in a general relativistic framework [14,35,36,
18].
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[18] C. Duval, P. Horváthy, Anyons with anomalous gyromagnetic ratio and the Hall effect, Phys. Lett. B 594 (2004) 402–409.
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